A Simple Method for Deprotection of the \mathbf{N} - and \mathbf{O}-Carbobenzoxy Groups and \boldsymbol{N}-Methylation of the Desosamine Sugar Moiety of Ketolides

Application to the Synthesis of Ketolide Analogues with Various 9-Iminoether Moieties and Their Antibacterial Activities

Tsutomu Iwaki, Takashi Nomura, Yukitoshi Narukawa, Koichi Uotani

Received: September 13, 2005 / Accepted: October 17, 2005
© Japan Antibiotics Research Association

Abstract

A simple synthetic method for deprotection of the N - and O -carbobenzoxy groups (Cbz) of the desosamine sugar moiety of ketolides is reported. This deprotection method is applicable to the synthesis of a variety of ketolide analogues with various 9 -iminoether moieties in good to moderate yield. Among the ketolide derivatives prepared by this method, compound 7 g with a quinoline-6-yl moiety showed potent activity against erythromycin-resistant pathogens as well as Haemophilus influenzae.

Keywords ketolide, antibacterial activity, carbobenzoxy, deprotection, Lewis acid

Introduction

For macrolide analogue synthesis, carbobenzoxy (Cbz) groups are usually used to protect the desosamine sugar moiety accompanied with N-demethylation and their deprotection is usually accomplished by catalytic hydrogenation $[1 \sim 3]$. However, it is difficult to use hydrogenation with Pd / C for compounds having substituents with poisonous activity against Pd / C, such as thiophene or quinoline, or for compounds with alkene or

[^0]alkyne, which are susceptible to hydrogenation. A Lewis acid, such as TMS-I (iodotrimethylsilane), can also be used for deprotection of the Cbz group [$4 \sim 8$], but using TMS-I for the deprotection of ketolide analogues often leads to a low yield of the deprotected products. We report a simple method for deprotection of the N - and $O-\mathrm{Cbz}$ groups and its application to the synthesis of ketolide analogues.

Synthesis

Scheme 1 shows the deprotection scheme of Cbz-protected ketolide 1 [3] giving the desired deprotected product 4 along with the half-deprotected intermediates $\mathbf{2}$ and $\mathbf{3}$. The results of deprotection with various reagents and conditions are summarized in Table 1. Deprotected product 4 was obtained in 26% yield using 2 eq of TMS-I along with intermediate 2 (48%) (run 1). With 10 eq of TMS-I, the desired product 4 was obtained in 47% yield as a sole product (run 2). These results suggest that the N-Cbz group is readily deprotected with TMS-I and requires a few equivalents (more than 2 eq) of TMS-I for deprotection of the $O-\mathrm{Cbz}$ group. If $\mathrm{AlCl}_{3} /$ anisole is used, only the O-deprotected intermediate $\mathbf{3}$ is obtained in a good yield (run 3), suggesting that AlCl_{3} is a suitable reagent for deprotection of the $O-\mathrm{Cbz}$ group. These results led us to combine the two reagents, TMS-I and AlCl_{3} (run 4). Treatment of $\mathbf{1}$ with TMS-I (4 eq) at room temperature followed by $\mathrm{AlCl}_{3} /$ anisole (4 eq) at $0^{\circ} \mathrm{C}$ gave the desired deprotected product 4 in almost quantitative yield. The reaction became complicated if $\mathrm{AlCl}_{3} /$ anisole was used prior to TMS-I, presumably due to the excess TMS-I would cause decomposition of the compound $\mathbf{3}$ or $\mathbf{4}$.

Table 1 Reaction conditions and yields of compounds 2,3 and 4

Run	Reagent	Molar equiv	Solvent	Temp (${ }^{\circ} \mathrm{C}$)	Time (h)	Yield (\%)		
						2	3	4
1	TMSI	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	20	48	0	26
2	TMSI	10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	3	0	0	47
3	$\mathrm{AlCl}_{3} /$ anisole	4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	0.8	0	93	0
4	TMSI, AlCl_{3} /anisole	4, 4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	1.3, 0.5	0	0	99

Scheme 1

Table 2 Yields of $\mathbf{7}$ from $\mathbf{6}$ by the deprotection method with $\mathrm{TMSI}^{2} / \mathrm{AICl}_{3}$, anisole and subsequent N -methylation
Product

Reagents and conditions : (a) $(\mathrm{ClCO})_{2}$, cat. DMF, $\mathrm{RCH}_{2} \mathrm{NH}_{2}$ (b) (1)TMSI, AlCl_{3} /anisole (2) $\mathrm{HCOOH}, \mathrm{HCHO} \mathrm{aq}$

Table 3 In vitro antibacterial activities of compounds $\mathbf{7 a \sim 7 g}$

Strain	MIC [$\mu \mathrm{g} / \mathrm{ml}]$							
	7 a	7b	7c	7d	7 e	7f	7 g	Telithromycin
Staphylococcus aureus Smith	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Sta. aureus SR17347 (EM-R)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.39
Streptococcus pneumoniae Type I	0.025	0.025	0.025	0.05	0.025	0.0125	0.0125	0.0125
Str. pneumoniae SR16651 (EM-R)	50	50	25	25	>100	0.78	0.05	0.2
Haemophilus influenzae SR88562	12.5	6.25	6.25	6.25	3.13	3.13	1.56	1.56

Reagents and conditions: (a) $\mathrm{NEt}_{3}, \mathrm{CuI}$, cat. $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$;
(b) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}$; (c) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$

Scheme 3

The above-mentioned deprotection method is effective for preparing a variety of ketolides by combination with a subsequent N-methylation procedure (Scheme 2). As shown in Table 2, ketolides with alkene, alkyne or heteroaromatics can be prepared in moderate yield from $\mathbf{6}$, which is readily accessible by amidation from the key intermediate 5 [9]. The key intermediate $\mathbf{5}$ is also readily accessible by oxidation of C-9 allyl iminoether group from compound $\mathbf{1}$ [3].

3-Aryl-propylamines used for the synthesis of $\mathbf{6}$ were prepared as shown in Scheme 3. Other amines not listed in Scheme 3 were commercially purchased or prepared by a known method.

Results and Discussion

All the ketolides prepared were evaluated in vitro by the standard agar dilution method with various strains. Table 3 shows the antibacterial activities of the ketolides prepared along with telithromycin [10] as a reference compound against erythromycin (EM)-susceptible and -resistant Staphylococcus aureus and Streptococcus pneumoniae including one strain of Haemophilus influenzae. Sta. aureus SR17347 is an inducibly MLS B $_{\text {B }}$ resistant strain bearing an ermC gene, and Str. pneumoniae is also an inducibly $\mathrm{MLS}_{\mathrm{B}}$ resistant strain bearing an ermB gene. All ketolides in Table

3 showed potent antibacterial activities against both EMsusceptible and -resistant S. aureus and EM-susceptible Str. pneumoniae. As for the analogues $7 \mathbf{a}, 7 \mathbf{b}$ and $\mathbf{7 c}$ bearing the phenyl group, all of them lost their activity against EMresistant Str. pneumoniae compared to the analogue with phenylpropylamide group (its activity not listed in Table 3). Although compound 7d and 7e bearing a five-membered heteroaromatic group were also almost inactive against EM-resistant Str. pneumoniae, compounds bearing 9~10membered fused bicyclic heteroaromatics showed potent antibacterial activity. Among the analogues prepared, compound 7 g with a quinoline-6-yl moiety was found to have the most potent activity against EM-resistant Str. pneumoniae as well as H. influenzae.

The deprotection and subsequent N-methylation method described herein enabled us to prepare a variety of ketolide analogues and should also contribute to the synthesis of novel ketolide derivatives.

Experimental

Infrared (IR) spectra were taken on a JASCO FT/IR-700 spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ spectra were recorded on a Varian Gemini-300. Chemical shifts are reported in ppm using tetramethylsilane (TMS) as an internal standard. HR-MS (FAB)/MS (FAB) were
recorded on a JEOL LMS-SX/SX 102A. Analytical thin layer chromatography (TLC) was carried out on Merck precoated TLC plates silica gel $60 \mathrm{~F}_{254}$ and visualized with UV light or $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ containing 5% ammonium molybdate and 0.2% ceric sulfate. Flush chromatography was performed with Merck silica gel 60 ($230 \sim 400$ mesh).

Measurement of in Vitro Antibacterial Activity

MICs were determined by a serial two-fold dilution method in Sensivity Disk Agar-N (Nissui Pharmaceutical, Tokyo, Japan). The overnight cultures of antibacterial strains in Mueller Hinton broth (Becton Dickinson) were diluted to about $10^{6} \mathrm{CFU} / \mathrm{ml}$. Bacterial suspensions of $1 \mu \mathrm{l}$ were spotted onto agar plates containing various concentrations of an antibiotic and incubated for 20 hours at $37^{\circ} \mathrm{C}$ before the MICs were scored.

Preparation of 4 from 1

Compound 1 [3] ($277 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and TMS-I $(160 \mu \mathrm{l}, 1.2 \mathrm{mmol})$ was added to the solution at room temperature under N_{2} atmosphere. After being stirred for 80 minutes at room temperature, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. To this was added $\mathrm{AlCl}_{3}(160 \mathrm{mg}, 1.2 \mathrm{mmol})$ and anisole $(3 \mathrm{ml})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ with stirring for 30 minutes at $0^{\circ} \mathrm{C}$. The reaction mixture was poured into saturated aqueous NaHCO_{3} and extracted twice with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)$ and the combined organic layer was washed with diluted aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was purified by column chromatography on silicagel to give 196 mg of compound 4 as a colorless foam (99\%).

MS (FAB): $655^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{11} 655.3806$ found 655.3797; IR $\left(\mathrm{CHCl}_{3}\right) 3691$, 3604, 3363, 1797, 1752, 1456, 1382; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm): $0.89(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.20$ $(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.29(3 \mathrm{H}, \mathrm{d}$, $J=6.1 \mathrm{~Hz}), 1.30(1 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{d}, J=6.7$ $\mathrm{Hz}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.57(1 \mathrm{H}, \mathrm{m}), 1.60(1 \mathrm{H}, \mathrm{m}), 1.64(1 \mathrm{H}$, $\mathrm{m}), 1.92(1 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz})$, $2.67(3 \mathrm{H}, \mathrm{s}), 2.68(3 \mathrm{H}, \mathrm{s}), 3.04(1 \mathrm{H}, \mathrm{m}), 3.05(1 \mathrm{H}, \mathrm{m}), 3.60$ $(1 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 4.53(2 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}$, dd, $J=10.1$ and 7.3 Hz$), 4.79(1 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H}, \mathrm{dd}, J=10.2$ and 2.8 Hz$), 5.16(1 \mathrm{H}, \mathrm{m}), 5.27(1 \mathrm{H}, \mathrm{m}), 6.00(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.41,13.25,14.52,15.46,15.58$, $18.84,19.64,20.71,22.46,26.06,31.20,33.14,34.42$, $36.13,47.23,49.60,51.09,60.55,68.40,71.43,74.58$, $76.47,78.11,78.73,82.80,84.51,102.09,116.96,134.28$, 154.16, 163.69, 168.69, 203.80.

Preparation of Compound 7a

1. Amidation

To a solution of $5(300 \mathrm{mg}, 0.318 \mathrm{mmol})$ in toluene $(6 \mathrm{ml})$ was added DMF ($2 \mu 1,0.03 \mathrm{mmol}$) and oxalyl chloride $(35 \mu \mathrm{l}, 0.38 \mathrm{mmol})$ at room temperature, and the reaction mixture was stirred for 30 minutes at room temperature. To this solution, 3-phenylpropargylamine ($83 \mathrm{mg}, 0.64 \mathrm{mmol}$) in THF (3 ml) was added, and the reaction mixture was stirred another 30 minutes. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt $(20 \mathrm{ml})$. The aqueous layer was extracted with AcOEt $(20 \mathrm{ml})$ and the combined organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on silicagel (n-hexane/AcOEt=4/1~2/1) to give 297 mg of compound 6a bearing an N -phenypropropargylacetamide group as a colorless foam (89\%).

MS (FAB): $1076^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{57} \mathrm{H}_{71} \mathrm{~N}_{3} \mathrm{O}_{16} \mathrm{Na} 1076.4732$ found 1076.4723; IR (KBr): 3440, 3063, 3032, 2974, 2938, 2880, 1811, 1752, 1701, $1521,1490,1455,1407,1382,1330,1287,1253,1167$, 1113, 1068, $1003\left(\mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.70$ $(3 \mathrm{H}, \mathrm{s}), 2.80$ and $2.84\left(3 \mathrm{H}\right.$, two s); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm): 10.1, 12.9, 13.8, 15.2, 15.3, 18.7, 19.7, 20.5, 22.2, $26.2,28.9,29.5,33.2,35.6,36.1,37.5,46.7,46.8,49.6$, $50.8,54.7,67.0,67.1,68.6,69.2,69.4,72.6,74.5,75.9$, $76.0,78.0,82.1,82.8,84.3,84.4,100.3,122.4,127.3$, $127.4,127.6,127.7,127.9,128.0,128.1,128.2,131.6$, $135.1,135.3,136.3,153.5,154.1,154.2,155.7,156.1$, 167.2, 168.6, 169.6, 203.3, 203.6.

2. Deprotection and N-methylation

This colorless foam 6a ($197 \mathrm{mg}, 0.187 \mathrm{mmol}$) bearing an N phenypropropargylacetamide was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 ml), and TMS-I $(106 \mu 1,0.75 \mathrm{mmol})$ was added to the solution at room temperature under N_{2} atmosphere. After being stirred for 1 hour at room temperature, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. To this was added AlCl_{3} (99 $\mathrm{mg}, 0.75 \mathrm{mmol}$) and anisole (1 ml) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{ml})$ with stirring for 30 minutes at $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{ml})$ and n-hexane $(8 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, and the precipitate was collected, washed three times with n-hexane and dissolved with $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ ($1 \mathrm{ml}-5 \mathrm{ml}$). This solution was poured into saturated aqueous NaHCO_{3} and extracted twice with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($10: 1$), and the combined organic layer was washed with diluted aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was dissolved with $\mathrm{MeOH}(3 \mathrm{ml})$, then $98 \%-\mathrm{HCO}_{2} \mathrm{H}(15 \mu \mathrm{l})$ and 35% aqueous $\mathrm{HCHO}(94 \mu \mathrm{l})$ were added with stirring at $75^{\circ} \mathrm{C}$ for 2 hours. After cooling to room temperature, the
reaction mixture was poured into saturated aqueous NaHCO_{3} and extracted with $\mathrm{AcOEt}(20 \mathrm{ml} \times 2)$. The combined extract was washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on silicagel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=80 / 1 \sim 20 / 1\right)$ to give 100 mg of compound $7 \mathbf{a}$ as a colorless foam (65\%).

MS (FAB): $800^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{~N}_{3} \mathrm{O}_{12} 800.4334$ found 800.4336 ; IR (KBr): 3442, 2974, 2938, 2879, 2839, 2785, 1811, 1752, 1716, 1683, $1599,1522,1490,1456,1381,1361,1324,1304,1282$, 1257, 1233, 1167, 1141, 1109, 1078, 1047, $1004\left(\mathrm{~cm}^{-1}\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.82(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.02$ $(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.22(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 1.26(3 \mathrm{H}, \mathrm{d}, J=$ $6.9 \mathrm{~Hz}), 1.28(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $1.39(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.20 \sim 1.94(6 \mathrm{H}, \mathrm{m}), 2.27(6 \mathrm{H}, \mathrm{s})$, $2.47(1 \mathrm{H}, \mathrm{m}), 2.67(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.74(3 \mathrm{H}, \mathrm{s}), 3.03$ $(1 \mathrm{H}$, quintet, $J=7.5 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 10.2 Hz$)$, $3.50 \sim 3.75(3 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.31(2 \mathrm{H}, \mathrm{dd}, J=6.0$ and 9.0 Hz$), 4.52(2 \mathrm{H}, \mathrm{s}), 4.86(1 \mathrm{H}, \mathrm{s}), 4.98(1 \mathrm{H}, \mathrm{dd}, J=3.0$ and 10.2 Hz$), 7.06(1 \mathrm{H}$, br t, $J=5.4 \mathrm{~Hz}), 7.24 \sim 7.32(3 \mathrm{H}$, m), $7.38 \sim 7.46(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.1$, $12.9,14.3,15.3,15.4,18.8,19.8,21.1,22.2,26.4,28.2$, $29.5,33.3,38.0,40.2,47.5,49.8,51.0,65.8,69.4,70.2$, $72.8,76.0,78.3,78.5,82.3,83.0,84.5,103.7,122.7,128.1$, $128.2,131.8,153.8,167.8,169.0,170.0,204.0$.

Preparation of Compounds $7 \mathrm{~b}, 7 \mathrm{c}, 7 \mathrm{~d}, 7 \mathrm{e}, 7 \mathrm{f}$, and 7 g

Compound $\mathbf{7 b}, \mathbf{7 c}, \mathbf{7 d}, 7 \mathrm{e}, 7 \mathrm{f}$ and 7 g were prepared by the same procedure described for the synthesis of 7a with cinnamylamine, (Z)-3-phenyl-allyamine [11], 10d, 10e, 3-benzothiazol-2-yl-propylamine [12] and $\mathbf{1 0 g}$, respectively.

Compound 7b

MS (FAB): $802\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{3} \mathrm{O}_{12} 802.4490$ found 802.4489 ; IR (KBr): 3436, 2974, 2938, 2879, 2785, 1811, 1752, 1717, 1677, 1525, $1495,1455,1380,1362,1324,1304,1283,1257,1233$, 1167, 1141, 1109, 1078, 1047, $1004\left(\mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.75(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{d}, J=$ $7.2 \mathrm{~Hz}), 1.23(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, $1.27(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.38(3 \mathrm{H}$, s), $1.52(3 \mathrm{H}, \mathrm{s}), 1.20 \sim 1.80(5 \mathrm{H}, \mathrm{m}), 2.27(6 \mathrm{H}, \mathrm{s}), 2.47(1 \mathrm{H}$, $\mathrm{m}), 2.54(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.70(3 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}$, quintet, $J=7.5 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{dd}, J=7.5$ and 10.2 Hz$), 3.48 \sim 3.73$ $(4 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}$, $\mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.50$ and $4.52(2 \mathrm{H}, \mathrm{ABq}, J=15.3 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{s}), 4.84(1 \mathrm{H}, \mathrm{dd}$, $J=3.0$ and 10.5 Hz$), 6.26(1 \mathrm{H}, \mathrm{dt}, J=6.6$ and 15.9 Hz$), 6.56$ $(1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 7.05(1 \mathrm{H}$, br t, $J=5.4 \mathrm{~Hz}), 7.15 \sim 7.42$
$(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.0,12.9,14.3$, $15.3,15.5,18.8,19.9,21.1,22.1,26.3,28.2,33.2,38.0$, $40.2,41.4,47.5,49.8,51.0,65.9,69.5,70.2,73.0,75.9$, $78.4,78.5,82.4,84.5,103.7,125.0,126.5,127.4,128.4$, 132.6, 136.6, 153.7, 167.6, 169.0, 170.2, 204.0.

Compound 7c

MS (FAB): $802^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{3} \mathrm{O}_{12} 802.4490$ found 802.4493; IR (KBr): 3436, 3055, 2973, 2938, 2879, 2785, 1811, 1751, 1717, 1676, $1527,1494,1456,1381,1363,1325,1304,1283,1257$, 1233, 1166, 1141, 1109, 1078, 1047, $1004\left(\mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.90(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.99(3 \mathrm{H}$, d, $J=6.9 \mathrm{~Hz}), 1.24(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.28(3 \mathrm{H}, \mathrm{d}, J=7.5$ $\mathrm{Hz}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.55(3 \mathrm{H}, \mathrm{s})$, $1.20 \sim 1.97(5 \mathrm{H}, \mathrm{m}), 2.28(6 \mathrm{H}, \mathrm{s}), 2.48(1 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}$, q, $J=6.9 \mathrm{~Hz}), 2.67(3 \mathrm{H}, \mathrm{s}), 3.02(1 \mathrm{H}$, quintet, $J=7.8 \mathrm{~Hz})$, $3.07(1 \mathrm{H}, \mathrm{br}$ s), $3.18(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 10.2 Hz$), 3.50 \sim$ $3.73(2 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.16 \sim 4.25(2 \mathrm{H}, \mathrm{m})$, $4.21(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.48(2 \mathrm{H}$, s), $4.81(1 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}$, dd, $J=2.7$ and 10.2 Hz$), 5.69$ $(1 \mathrm{H}, \mathrm{dt}, J=6.9$ and 11.7 Hz$), 6.58(1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 6.91$ $(1 \mathrm{H}$, br t, $J=5.4 \mathrm{~Hz}), 7.19 \sim 7.38(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.3,13.0,14.3,15.3,15.6,18.8,19.9$, $21.1,22.3,26.3,28.2,33.2,37.4,38.0,40.2,47.6,49.8$, $51.1,65.9,69.5,70.2,72.9,76.1,78.3,78.6,82.3,84.5$, $103.7,127.0,127.8,128.2,128.7,131.5,136.3,153.7$, 167.5, 169.0, 170.1, 204.0.

Compound 7d

MS (FAB): $810^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{~S}_{1} 810.4211$ found 810.4219; IR $\left(\mathrm{CHCl}_{3}\right)$: 3424, 3350, 3016, 2970, 2934, 2870, 1805, 1751, 1714, $1663,1537,1454,1381,1361,1345,1321,1305,1282$, $1255,1232,1220,1165,1139,1107,1075,1046,1004$ $\left(\mathrm{cm}^{-1}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.90(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$, $1.02(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.25(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.26(3 \mathrm{H}$, d, $J=7.5 \mathrm{~Hz}), 1.28(3 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.20 \sim 2.00(8 \mathrm{H}, \mathrm{m}), 2.33$ $(6 \mathrm{H}, \mathrm{s}), 2.56(2 \mathrm{H}, \mathrm{m}), 2.69(3 \mathrm{H}, \mathrm{s}), 2.88(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, $3.03(1 \mathrm{H}$, quintet, $J=7.8 \mathrm{~Hz}), 3.19 \sim 3.30(2 \mathrm{H}, \mathrm{m}), 3.36 \sim$ $3.47(1 \mathrm{H}, \mathrm{m}), 3.51 \sim 3.74(3 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz})$, $4.22(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 4.46(2 \mathrm{H}$, s), $4.84(1 \mathrm{H}, \mathrm{s}), 5.03(1 \mathrm{H}$, dd, $J=2.4$ and 10.2 Hz$), 6.82$ $(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{dd}, J=3.1$ and 5.1 Hz$), 6.94$ $(1 \mathrm{H}$, br t, $J=5.7 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=1.2$ and 5.1 Hz$) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.3,12.9,14.3,15.3,15.5,18.8$, 19.9, 21.1, 22.3, 26.3, 27.2, 28.6, 31.2, 33.2, 38.0, 38.5, $40.2,47.5,49.7,51.0,65.8,69.3,70.2,72.9,76.1,78.4$, $78.5,82.3,84.6,103.5,122.9,124.3,126.7,144.2,153.8$, 167.6, 169.2, 170.4, 203.9.

Compound 7e

MS (FAB): $811^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{39} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{1} 811.4163$ found 811.4166 ; IR (KBr): 3433, 3080, 2973, 2938, 2878, 2784, 1809, 1751, 1716, 1673, $1533,1504,1455,1380,1363,1323,1305,1284,1257$, 1233, 1168, 1141, 1109, 1078, 1047, $1004\left(\mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.90(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.02(3 \mathrm{H}$, d, $J=6.9 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.26(3 \mathrm{H}, \mathrm{d}, J=5.4$ $\mathrm{Hz}), 1.28(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.36$ $(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.20 \sim 2.00(6 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}$, quintet, $J=7.5 \mathrm{~Hz}), 2.27(6 \mathrm{H}, \mathrm{s}), 2.46(1 \mathrm{H}, \mathrm{m}), 2.57(1 \mathrm{H}, \mathrm{q}, J=6.6$ $\mathrm{Hz}), 2.69(3 \mathrm{H}, \mathrm{s}), 3.09(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{dd}$, $J=7.5$ and 10.2 Hz$), 2.95 \sim 3.75(5 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{q}, J=$ $7.2 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, $4.46(2 \mathrm{H}, \mathrm{s}), 4.84(1 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and 10.2 $\mathrm{Hz}), 7.03(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.4 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz})$, $7.65(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.3$, $12.9,14.3,15.3,15.6,18.8,19.9,21.1,22.3,26.4,28.2$, $29.5,30.4,33.2,38.0,38.2,40.2,47.6,49.7,51.0,65.8$, $69.5,70.3,72.9,76.1,78.4,78.6,82.4,84.6,103.7,118.1$, $142.2,153.8,167.6,169.2,170.1,170.4,203.9$.

Compound 7f

MS (FAB): $861^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{43} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{1} 861.4320$ found 861.4329 ; IR $\left(\mathrm{CHCl}_{3}\right)$: 3424, 3348, 2970, 2934, 2870, 2830, 1805, 1751, 1714, $1665,1536,1454,1381,1361,1345,1306,1282,1232$, 1220, 1165, 1139, 1107, 1075, 1046, $1004\left(\mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.87(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.02(3 \mathrm{H}$, d, $J=6.6 \mathrm{~Hz}), 1.23(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}), 1.28(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.36(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.39$ $(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.20 \sim 1.98(6 \mathrm{H}, \mathrm{m}), 2.16(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}), 2.27(6 \mathrm{H}, \mathrm{s}), 2.45(1 \mathrm{H}, \mathrm{m}), 2.57(1 \mathrm{H}, \mathrm{q}, J=6.9$ $\mathrm{Hz}), 2.71(3 \mathrm{H}, \mathrm{s}), 2.95 \sim 3.75(6 \mathrm{H}, \mathrm{m}), 3.18(2 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}), 3.83(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.30$ $(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.47(2 \mathrm{H}, \mathrm{s}), 4.85(1 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{dd}$, $J=2.4$ and 10.2 Hz$), 7.07(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.9 \mathrm{~Hz}), 7.32(1 \mathrm{H}$, $\mathrm{dt}, J=1.2$ and 7.8 Hz$), 7.43(1 \mathrm{H}, \mathrm{dt}, J=1.2$ and 7.8 Hz$)$, $7.82(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.2,12.9,14.3,15.3,15.5,18.9,19.9$, $21.1,22.3,26.4,28.2,29.1,31.5,33.2,38.0,38.3,40.2$, $47.6,49.8,51.0,65.8,69.5,70.3,72.9,76.1,78.4,78.6$, $82.3,84.6,103.7,121.5,122.5,124.5,125.7,135.2,153.2$, 153.8, 167.6, 169.2, 170.4, 171.1, 203.9.

Compound 7g

MS (FAB): $855^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HR-MS (FAB): calcd for $\mathrm{C}_{45} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{12} 855.4755$ found 855.4749; IR (KBr): 3433, 2973, 2937, 2878, 2784, 1809, 1751, 1716, 1672, 1594, $1569,1534,1501,1455,1380,1322,1305,1284,1257$, $1233,1219,1167,1142,1109,1079,1048,1004\left(\mathrm{~cm}^{-1}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.81(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.01$ $(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.23(3 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 1.26(3 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}), 1.28(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, $1.39(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.20 \sim 2.06(8 \mathrm{H}, \mathrm{m}), 2.26(6 \mathrm{H}, \mathrm{s})$, $2.44(1 \mathrm{H}, \mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 2.70(3 \mathrm{H}, \mathrm{s}), 2.86$ $(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.01(1 \mathrm{H}$, quintet, $J=7.8 \mathrm{~Hz}), 3.14 \sim 3.75$ $(6 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $4.29(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 4.45(2 \mathrm{H}, \mathrm{s}), 4.83(1 \mathrm{H}, \mathrm{s}), 4.97$ $(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 10.2 Hz$), 7.07(1 \mathrm{H}$, br t, $J=5.7 \mathrm{~Hz})$, $7.35(1 \mathrm{H}, \mathrm{dd}, J=4.2$ and 8.1 Hz$), 7.60(1 \mathrm{H}, \mathrm{dd}, J=2.1$ and $8.7 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{s}), 8.01(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.13(1 \mathrm{H}, \mathrm{dd}$, $J=1.2$ and 8.1 Hz$), 8.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm): 10.1, 12.9, 14.3, 15.3, 15.6, 18.8, 19.9, 21.1, 22.2, $26.3,28.2,30.6,33.1,38.0,38.9,40.2,47.6,49.8,51.0$, $65.8,69.5,70.3,73.0,76.0,78.4,78.6,82.4,84.6,103.8$, $120.9,126.2,128.3,129.2,131.0,135.8,140.1,147.1$, $149.5,153.8,167.6,169.3,170.4,203.9$.

Preparation of Compound 10d

To a solution of N-Boc-propargylamine $(2.48 \mathrm{~g}, 16 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(32 \mathrm{ml})$ were successively added $\mathrm{NEt}_{3}(2.22 \mathrm{ml}$, $16 \mathrm{mmol}), \mathrm{CuI}(61 \mathrm{mg}, 0.32 \mathrm{mmol})$, 2-iodo-thiophene (0.9 $\mathrm{ml}, 8 \mathrm{mmol})$ and $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(112 \mathrm{mg}, 0.16 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 0.5 hour. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The resultant residue was purified by column chromatography on silicagel (toluene/AcOEt $=15 / 1 \sim 10 / 1$) to give 1.9 g of compound $\mathbf{8 d}(99 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.47(9 \mathrm{H}, \mathrm{s}), 4.17(2 \mathrm{H}, \mathrm{d}$, $J=3.9 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{br}$ s $), 6.96(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and 5.1 $\mathrm{Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=0.9$ and 3.6 Hz$), 7.23(1 \mathrm{H}$, dd, $J=0.9$ and 5.1 Hz).

Compound 8d ($593 \mathrm{mg}, 2.5 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(8 \mathrm{ml})$ and AcOEt $(8 \mathrm{ml})$. To this solution was added $5 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ with stirring at room temperature under H_{2} atmosphere for 1 hour. The mixture was filtered and concentrated and dissolved in $\mathrm{EtOH}(8 \mathrm{ml})$ and AcOEt $(8 \mathrm{ml})$. To this solution was added again $5 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ with stirring at room temperature under H_{2} atmosphere for one more hour. The mixture was filtered and concentrated and 603 mg of compound 9 d was obtained (99%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.45(9 \mathrm{H}, \mathrm{s}), 1.81(2 \mathrm{H}, \mathrm{m})$, $2.67(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $6.92 \sim 6.96(2 \mathrm{H}, \mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{dd}, J=3.0$ and 5.1 Hz$)$.

Compound 9d ($350 \mathrm{mg}, 1.45 \mathrm{mmol}$) was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{ml})$ and stirred on an ice-water bath. To this solution was added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(1.8 \mathrm{ml})$, and the reaction mixture was stirred for 1 hour and concentrated in vacuo. The resultant residue was quenched with diluted aqueous NaOH and extracted with AcOEt. The aqueous layer was extracted with AcOEt, and the combined organic layer was
dried over MgSO_{4}, filtered and concentrated in vacuo. Finally, 205 mg of compound $\mathbf{1 0 d}$ was obtained (86%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.74 \sim 1.84(2 \mathrm{H}, \mathrm{m}), 2.68$ $(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.74(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $6.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{m})$

Preparation of Compound 10e and 10 g

Compound 10 e and $\mathbf{1 0 g}$ were prepared by the same procedure described for the synthesis of $\mathbf{1 0 d}$ with 2 -bromothiazple and 6-bromo-quinoline, respectively.

Compound 10e
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.90 \sim 2.00(2 \mathrm{H}, \mathrm{m}), 2.80(2 \mathrm{H}$, $\mathrm{t}, J=6.6 \mathrm{~Hz}), 3.10(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{d}, J=3.6$ $\mathrm{Hz}), 7.67(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz})$.

Compound 10 g

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.81 \sim 1.95(2 \mathrm{H}, \mathrm{m}), 2.78(2 \mathrm{H}$, t, $J=7.2 \mathrm{~Hz}$), $2.86(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$), $7.37(1 \mathrm{H}, \mathrm{dd}, J=4.2$ and 8.4 Hz$), 7.55 \sim 7.60(1 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{s}), 8.01 \sim 8.12$ $(2 \mathrm{H}, \mathrm{m}), 8.84 \sim 8.88(1 \mathrm{H}, \mathrm{m})$.

References

1. Edwin HF, Hubert WM, Robert EM. Erythromycin. II. Des-N-methylerythromycin and N-methyl-C ${ }^{14}$-erythromycin. J Am Chem Soc 77: 3104-3106 (1954)
2. Watanabe Y, Morimoto S, Adachi T, Kashimura M, Asaka T. Chemical modification of erythromycins. IX. Selective methylation at the C-6 hydroxyl group of erythromycin A oxime derivatives and preparation of clarithromycin. J Antibiot 46: 647-660 (1993)
3. Nomura T, Yasukata T, Narukawa Y, Uotani K. 9-Oxime-3ketolides: Modification at the C-11,12 diol moiety and
antibacterial activities against key respiratory pathogens. Bioorganic Med Chem 13: 6054-6063 (2005)
4. Williams RM, Aldous DJ, Aldous SC. General synthesis of β, γ-alkynylglycine derivatives. J Org Chem 55: 4657-4663 (1990)
5. Bose DS, Thurston DE. Boron trifluoride promoted cleavage of benzyl carbamates. Tetrahedron Lett 31: 6903-6906 (1990)
6. Horikawa M, Shima Y, Hashimoto K, Shirahama H. Synthesis and excitatory activitis of some aromatic kainoids, acromelic acid analogs. Heterocycles 40: 1009-1014 (1995)
7. Cainelli G, Panunzio M, Bandini E, Martelli G, Spunta G, Da Col M. β-Lactams from ester enolates and N TMSimines: Enantioselective synthesis of $(6 R, 7 S)-1 \beta-3-$ dimethyl-3-isocephem. Tetrahedron 51: 5067-5072 (1995)
8. Tsujimoto T, Murai AA. Efficient detachment of N-benzyl carbamate group. Synlett 2002: 1283-1284 (2002)
9. Nomura T, Iwaki T, Yasukata T, Nishi K, Narukawa Y, Uotani K, Hori T, Miwa H. A new type of ketolides bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether synthesis and structure-activity relationships. Bioorganic Med Chem 13: 6615-6628 (2005)
10. Denis A, Agouridas C, Auger J, Benedetti Y, Bonnefoy A, Bretin F, Chantot J, Dussarat A, Fromentin C, D'Ambrieres S, Lachaud S, Laurin P, Martret O, Loyau V, Tessot N, Pejac J, Perron S. Synthesis and antibacterial activity of HMR 3647 a new ketolide highly potent against erythromycinresistant and susceptible pathogens. Bioorg Med Chem Lett 9: 3075-3080 (1999)
11. Corriu Robert JP, Geng B, Moreau JJE. An efficient synthesis of substituted (Z)-allylamines and 7-membered nitrogen heterocycles from (Z)-3-(tributylstannyl)allylamine. J Org Chem 58: 1443-1448 (1993)
12. Botta A , Wiss H. Ring-opening aminolysis of lactams-A convenient route to five- and six-membered 2-(ω -aminoalkyl)-substituted heterocycles. Justus Liebigs Annalen der Chemie 1976: 336-347 (1976)

[^0]: T. Nomura (Corresponding author), T. Iwaki, Y. Narukawa, K. Uotani: Discovery Research Laboratories, Shionogi \& Co., Ltd., 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 553-0002, Japan. E-mail: takashi.nomura@shionogi.co.jp

